1. (a) What are all the possible \textit{atomic propositions} or \textit{states} of Boolean algebra B_1 consisting of two atomic sentence letters (X, Y)?

\textbf{Solution:}
\begin{align*}
 s_1 &: X \land Y \\
 s_2 &: X \land \neg Y \\
 s_3 &: \neg X \land Y \\
 s_4 &: \neg X \land \neg Y
\end{align*}

(b) Display the possible logical space of B_1 using a truth table.

(c) Display the \textit{probability} space M of B_1 using a truth table and a Venn diagram.

For the rest of the exam this will be M_1.

\begin{tabular}{ccc|c}
\hline
X & Y & s_i & $Pr(s_i)$ \\
\hline
T & T & s_1 & a_1 \\
T & F & s_2 & a_2 \\
F & T & s_3 & a_3 \\
F & F & s_4 & a_4 \\
\hline
\end{tabular}

I don’t know how to draw a Venn diagram in LaTeX yet, so you’ll have to figure it out on your own or ask me.

2. For Boolean algebra B_2 consisting of three atomic sentence letters (X, Y, Z):

(a) Display the possible logical space of B_2 using a truth table.

(b) Display the \textit{probability} space M of B_2 using a truth table and a Venn diagram.

For the rest of the exam this will be M_2.

\begin{tabular}{ccc|c}
\hline
X & Y & Z & s_i & $Pr(s_i)$ \\
\hline
T & T & T & s_1 & a_1 \\
T & T & F & s_2 & a_2 \\
T & F & T & s_3 & a_3 \\
T & F & F & s_4 & a_4 \\
F & T & T & s_5 & a_5 \\
F & T & F & s_6 & a_6 \\
F & F & T & s_7 & a_7 \\
F & F & F & s_8 & a_8 \\
\hline
\end{tabular}

I don’t know how to draw a Venn diagram in LaTeX yet, so you’ll have to figure it out on your own or ask me.
3. Use a truth table to assign $Pr_M(s_i)$ to all the states in B_2 such that:
$Pr(X) = 0.6$, $Pr(Y) = 0.3$, $Pr(Z) = 0.3$, $Pr(X \& Y \& Z) = 0.1$, and $Pr(Y \& Z) = 0.2$.
Designate $Pr_M(s_i)$ for all unspecified states such that the assignments are coherent.
For the rest of this exam this will be M_3.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>s_i</th>
<th>$Pr(s_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>s_1</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>s_2</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>s_3</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>s_4</td>
<td>0.3</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>s_5</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>s_6</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>s_7</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>s_8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Solution:

Other solutions are also possible. You just have to make sure that your total probability sums to 1.0, and that the values for the designated probabilities add up correctly. E.g., $Pr(X) = \sum_{i=1-4} Pr(s_i)$, which in this case should add to 0.6.

4. What is the probability of a proposition p in a probability model M?

Solution:

The probability of a proposition p is equal to the sum of probabilities of states s_i that entail the truth of proposition p;

$Pr(p) = \sum_{s_i \Rightarrow p} Pr(s_i)$

5. Determine the probability of the following propositions in M_1

(a) $\sim X \& Y$

Solution: $Pr(\sim X \& Y) = Pr(s_3) = a_3$

(b) $X \vee Y$

Solution: $Pr(X \vee Y) = Pr(s_1) + Pr(s_2) + Pr(s_3) = a_1 + a_2 + a_3$
6. Determine the probability of the following propositions in M_2 & M_3

[2 points] (a) $\sim(X \lor Y)$

Solution:

M_2: $Pr(\sim(X \lor Y)) = Pr(s_7) + Pr(s_8) = a_7 + a_8$

M_3: $Pr(\sim(X \lor Y)) = Pr(s_7) + Pr(s_8) = 0 + 0.3 = 0.3$

Note: your values for M_3 may differ depending on your answer to question 3

[2 points] (b) $(X \lor Y) \land Z$

Solution:

M_2: $Pr((X \lor Y) \land Z) = Pr(s_1) + Pr(s_3) + Pr(s_5) = a_1 + a_3 + a_5$

M_3: $Pr((X \lor Y) \land Z) = Pr(s_1) + Pr(s_3) + Pr(s_5) = 0.1 + 0.1 + 0.1 = 0.3$

Note: your values for M_3 may differ depending on your answer to question 3

[5 points] 7. Prove, algebraically, that in M_2: $Pr(\sim[X \land (\sim Y \lor \sim Z)]) = Pr(\sim X) + Pr(Y \land Z) - Pr(\sim X \land Y \land Z)$

There are a number of strategies available here, but I'd recommend first solving for each p on a truth table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>$\sim[X \land (\sim Y \lor \sim Z)]$</th>
<th>$\sim X$</th>
<th>$Y \land Z$</th>
<th>$\sim X \land Y \land Z$</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>s_1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>s_2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>s_3</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>s_4</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>s_5</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>s_6</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>s_7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>s_8</td>
</tr>
</tbody>
</table>

Solution:

Now simply solve for $Pr(p)$ for each p (First step coded by color):

$Pr(\sim[X \land (\sim Y \lor \sim Z)]) = Pr(\sim X) + Pr(Y \land Z) - Pr(\sim X \land Y \land Z)$

$a_1 + a_5 + a_6 + a_7 + a_8 = a_5 + a_6 + a_7 + a_8 + a_1 + a_5 - a_5^*$

$a_1 + a_5 + a_6 + a_7 + a_8 = a_5 + a_6 + a_7 + a_8 + a_1 + a_5 - a_5^*$

$a_1 + a_5 + a_6 + a_7 + a_8 = a_1 + a_5 + a_6 + a_7 + a_8$

* I’ve skipped the ‘$Pr(s_i) \iff a_i$’ step, which I assume you understand at this point.
[5 points] 8. Using tools from the algebraic proof methods, prove that if \(\sim X \lor Y \) is true, then \(\Pr(X) \leq \Pr(Y) \) must also be true.

(Hint: If you are given the truth value of a proposition, consider what you may infer about \(Pr_M(s_i) \) for all possible \(s_i \) in \(M \).)

Solution: First let’s take a look at a truth table describing the logical & probability space if \(\sim X \lor Y \) is true:

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(\sim X \lor Y)</th>
<th>(s_i)</th>
<th>(Pr(s_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>(s_1)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(s_2)</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>(s_3)</td>
<td>(a_3)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>(s_4)</td>
<td>(a_4)</td>
</tr>
</tbody>
</table>

Because \(\sim X \lor Y \) is false in \(s_2 \), we know that if \(\sim X \lor Y \) is true then \(Pr(s_2) = 0 \). We don’t know anything about the \(Pr(s_i) \) for the other states, except that together they must sum to 1.0.

Now, using the algebraic method, solve for \(Pr(X) \) & \(Pr(Y) \).

\[
Pr(X) = Pr(s_1) + Pr(s_2) = a_1 + 0 = a_1;
\]

\[
Pr(Y) = Pr(s_1) + Pr(s_3) = a_1 + a_3;
\]

\(a_1 \leq a_1 + a_3 \), so \(Pr(X) \leq Pr(Y) \)

QED
A probability model M is a Boolean algebra of propositions B together with a probability function $Pr_M(s_i)$ satisfying the following three axioms:

1. **Normativity**
 For any proposition p, the probability of that proposition is non-negative;
 \[\forall p, Pr(p) \geq 0 \]

2. **Certainty**
 All tautologies \top have a probability of 1;
 \[Pr(\top) = 1; \]
 Where Ω is a necessary event, $Pr(\Omega) = 1$

3. **Additivity**
 The probability of a disjunction of mutually exclusive (m.e.) propositions is the sum of the probability of its disjunctions;
 \[Pr(p \lor q) = Pr(p) + Pr(q) \]

3 alt. **Additivity** (General Form)
 The probability of a disjunction of propositions is the sum of the probability of its disjuncts minus the conjunction of those disjuncts;
 \[Pr(p \lor q) = Pr(p) + Pr(q) - Pr(p \land q) \]

Additionally, we import the rules of logic and algebra and get the following two definitions:

Conditional Probability: $Pr(X|Y) = \frac{Pr(X \land Y)}{Pr(Y)}$

Independence: X and Y are independent of each other iff $Pr(X \land Y) = Pr(X) \cdot Pr(Y)$

9. Prove, axiomatically, that $Pr(\sim p) = 1 - Pr(p)$. This will be theorem 4.

Solution:

Proof:

- By logic, $p \lor \sim p$ is a tautology \top;
- By (2), $Pr(p \lor \sim p) = 1$;
- By logic, p and $\sim p$ are mutually exclusive;
- By (3) $Pr(p \lor \sim p) = Pr(p) + Pr(\sim p)$;
- By algebra, $Pr(p) + Pr(\sim p) = 1$;
- By algebra, $Pr(\sim p) = 1 - Pr(p)$
 \[\text{QED} \]
For 10 you may appeal to any of the following theorems by number:

(4) \(Pr(\sim X) = 1 - Pr(X) \);
(5) \(Pr(\bot) = 0 \) (where \(\bot \) is a contradiction or logical falsehood);
(6) If \(X \equiv Y \) or \(X \iff Y \), then \(Pr(X) = Pr(Y) \);
(7) \(Pr(X) = Pr(X\&Y) + Pr(X\&\sim Y) \)

[10 points] 10. Prove, axiomatically, that if \(p \) entails \(q \), then \(Pr(p) \) is less than or equal to \(Pr(q) \);
That is, prove:
If \(p \Rightarrow q \), then \(Pr(p) \leq Pr(q) \)

(Hint: Theorem (7) tells us that:
\(Pr(p) = Pr(p\&q) + Pr(p\&\sim q) \)
\(Pr(q) = Pr(p\&q) + Pr(\sim p\&q) \)
Keep in mind that these are general forms, much like the general form of the Axiom of Additivity. Consider whether a special case of either of these may be in order, akin to the special case of the Axiom of Additivity.)

Solution: There are several solutions. Let’s look at two.

Proof 1: If \(p \Rightarrow q \) . . .
- By definition, if \(p \Rightarrow q \), then if \(p \) is true, \(q \) must also be true, i.e., if \(p \) is true, then \(p\&q \) must be true as well;
- By logic, \(p\&q \) is mutually exclusive of \(p\&\sim q \). So if \(p \Rightarrow q \) is true and \(p \) is true, then \(p\&\sim q \)
must be false, i.e., if \(p \) is true, we may treat \(p\&\sim q \) as a \(\bot \);
- By (7) \(Pr(p) = Pr(p\&q) + Pr(p\&\sim q) \), but by (5) \(Pr(p\&\sim q) = 0 \) so
- \(Pr(p) = Pr(p\&q) + 0 = Pr(p\&q) \);
- By (7) \(Pr(q) = Pr(p\&q) + Pr(\sim p\&q) \);
- By algebra we can substitute \(Pr(p\&q) \) for \(Pr(p) \), giving us \(Pr(q) = Pr(p) + Pr(\sim p\&q) \);
- By (1) \(Pr(\sim p\&q) \geq 0 \), so, by algebra, \(Pr(q) \geq Pr(p) \);
QED

Proof 2:
- Prove that if \(p \Rightarrow q \), then \(Pr(p) \leq Pr(q) \)
- By (7) \(Pr(p) = Pr(p\&q) + Pr(p\&\sim q) \), and \(Pr(q) = Pr(p\&q) + Pr(\sim p\&q) \),
so we need to prove that if \(p \Rightarrow q \), \(Pr(p\&q) + Pr(p\&\sim q) \leq Pr(p\&q) + Pr(\sim p\&q) \);
- By algebra we can subtract \(Pr(p\&q) \) from each side, leaving us with the need to prove
that, if \(p \Rightarrow q \), then \(Pr(p\&\sim q) \leq Pr(\sim p\&q) \);
- By definition, if \(p \Rightarrow q \) is true, then whenever \(p \) is true, \(q \) must be true as well. That is,
whenever \(p \) is true, \(p\&q \) will be true as well.
- By logic, \(p\&q \) and \(p\&\sim q \) are mutually exclusive, so if \(p \Rightarrow q \) is true, then \(p\&\sim q \) will
always be false, and may be treated as a \(\bot \);
- By (5) \(Pr(p\&\sim q) = 0 \);
- By (1) \(Pr(\sim p\&q) \geq 0 \);
- By algebra, then, \(Pr(p\&\sim q) \leq Pr(\sim p\&q) \), so \(Pr(p) \leq Pr(q) \)
QED
Extra Credit: Prove, axiomatically, that if \(p \Rightarrow q \), then \(Pr(q|p) = 1 \).

Solution: Proof:

- If \(p \Rightarrow q \), then if \(p \) is true \(q \) must be true as well;
- By logic, If \(p \Rightarrow q \), then \(p \iff q \& p \);
- By (6) \(Pr(p) = Pr(q \& p) \);
- By definition, \(Pr(q|p) = \frac{Pr(q \& p)}{Pr(p)} \);
- By algebra, \(Pr(q|p) = \frac{Pr(p)}{Pr(p)} = 1 \);

QED