Supplemental Homework
(Due in class, Thursday Dec. 8)

Section 1 – Probability Space

1. What are all the possible atomic propositions or states of:
 (a) Boolean algebra 1 \((B_1)\) consisting of two atomic sentence-letters \((X, Y)\)?
 (b) \(B_2\) consisting of three atomic sentence-letters \((X, Y, Z)\)?

2. Display the possible logical space of \(B_1 \& B_2\) using truth tables and Venn diagrams.

3. What is a probability model \((M)\)?

4. We learned that Probability Models \((M)\) may be conceptualized as extensions of Boolean Algebras \((B)\). Consider a \(B\) with two atomic sentence letters \((X, Y)\), and four states:
 \((s_1): (X \& Y)\)
 \((s_2): (X \& \sim Y)\)
 \((s_3): (\sim X \& Y)\)
 \((s_4): (\sim X \& \sim Y)\)
 (a) Display the probability space of \(M\) of \(B\) using truth tables and Venn diagrams. For the rest of the homework assignment, this will be \(M_1\).
 (b) Display the probability space of \(M\) of \(B\) using truth tables and Venn diagrams when the values of \(\Pr_M(s_i)\) are:
 \(\Pr_M(s_1) = 1/6\)
 \(\Pr_M(s_2) = 1/4\)
 \(\Pr_M(s_3) = 1/8\)
 \(\Pr_M(s_4) = 11/24\)
 For the rest of the homework assignment, this will be \(M_3\).
 (c) Display the probability space of \(M\) of \(B\) using truth tables and Venn diagrams when the values of \(\Pr_M(s_i)\) are:
 \(\Pr_M(s_1) = 0\)
 \(\Pr_M(s_2) = 1/3\)
 \(\Pr_M(s_3) = 1/6\)
 \(\Pr_M(s_4) = 1/2\)
 For the rest of the homework assignment, this will be \(M_4\).
 (d) Display the probability space of \(M\) of \(B_2\) from problem 1b above using truth tables and Venn diagrams. For the rest of the homework assignment, this will be \(M_2\).

5. (a) What is the relation between \(X\) and \(Y\) in \(M_4\)?
 (b) Assign probabilities to the states of \(M_3\) such that \(X\) and \(Y\) will be exclusive and exhaustive. For the rest of the homework assignment this will be \(M_5\).
 (c) Draw a truth table and Venn diagram displaying the probability space of \(M_5\) in 5b.
Section 2 – Algebraic Proofs

6. (a) What is the probability of a proposition \(p \) in a probability model \(M \)?
(b) What is the probability of \((X \lor Y) \) in \(M \)?
(c) What is the probability of \((X \land Y) \) in \(M \)?
(d) What is the probability of \((X \lor Y) \) in \(M \)?
(e) What is the probability of \((X \lor Y) \) in \(M \)?

7. Determine the probability of the following propositions \((p) \) in \(M_1, M_3, \) and \(M_4 \):
 (a) \((X \land Y) \)
 (b) \((\neg X \lor Y) \)
 (c) \((X \rightarrow Y) \land Y \)

8. Determine the probability of the following propositions \((p) \) in \(M_2 \):
 (a) \((X \lor Y) \)
 (b) \((X \land Y \land Z) \)
 (c) \((X \lor Y) \rightarrow Z \)
 (d) \((X \lor Y) \land (Y \lor Z) \)

9. Prove, algebraically, that: \(\Pr(X \lor Y) = \Pr(X) + \Pr(Y) - \Pr(X \land Y) \) in (a) \(M_1 \) and (b) \(M_4 \).

10. Prove, algebraically, that: \(\Pr(X) = \Pr(X \land Y) + \Pr(X \land \neg Y) \) in \(M_1 \).

11. Define \(\Pr(X \mid Y) \) in a non-conditional form.

12. Prove, algebraically, that: \(\Pr(X \mid Y) = \frac{\Pr(Y \mid X) \cdot \Pr(X)}{\Pr(Y)} \) in \(M_1 \).

13. Prove, algebraically, that: \(\Pr(X \lor Y \mid Z) = \Pr(X \mid Z) + \Pr(Y \mid Z) - \Pr(X \land Y \mid Z) \) in \(M_2 \).

14. What is Bayes’ Rule?

15. Prove, algebraically, that \(\Pr(x \land y) = \Pr(x) \cdot \Pr(y) \equiv \Pr(x \mid y) = \Pr(x \mid \neg y) \).
 (hint: Do this in \(M_1 \); start by determining what each sentence is algebraically, then what each side of the biconditional would look like.)
A probability model \((M)\) is a Boolean algebra\(^1\) of propositions \(B\) together with a probability function \(\Pr(\cdot)\) satisfying the following three axioms:

1. For any proposition, the probability of that proposition is non-negative;
 \[\forall p, \Pr(p) \geq 0 \]

2. All tautologies \((T)\) have a probability of 1;
 \[\Pr(T) = 1; \]
 where \(\Omega\) is a logical truth, \(\Pr(\Omega) = 1\)

3. The probability of a disjunction of propositions is the sum of the probability of its disjuncts minus the probability of the conjunction of its disjuncts:
 \[\Pr(p \lor q) = \Pr(p) + \Pr(q) - \Pr(p \land q) \]

A special case of this axiom concerns the disjunction of mutually exclusive (m.e.) propositions, in which case the probability is simply the sum of the probability of its disjuncts (why?).

\[\Pr(p \lor q) = \Pr(p) + \Pr(q) \]

Def'n:

\[\Pr(X \mid Y) = \frac{\Pr(X \land Y)}{\Pr(Y)} = \Pr\left(\frac{X \land Y}{Y} \right) \]

16. Prove, axiomatically, that \(\Pr(\sim p) = 1 - \Pr(p)\). This will be theorem 4.

17. Prove, axiomatically, that the probability of a logical falsity is 0, i.e., \(\Pr(F) = 0\).

18. Prove, axiomatically, that if \(x\) and \(y\) mutually entail each other, then \(\Pr(x) = \Pr(y)\).

19. Prove, axiomatically, that \(\Pr(x) = \Pr(x \land y) + \Pr(x \land \sim y)\)

 (hint: \(x \land T\) is logically equivalent to \(x\). Why?)

Def'n: \(x\) and \(y\) are probabilistically independent of each other when \(\Pr(x \land y) = \Pr(x) \cdot \Pr(y)\).

20. Prove, axiomatically, that when \(x\) and \(y\) are independent and \(\Pr(x) > 0\) and \(\Pr(y) > 0\):

 (a) \(\Pr(x \mid y) = \Pr(x)\)

 (b) \(\Pr(y \mid x) = \Pr(y)\)

21. Prove that if \(x, y,\) and \(z\) are independent, then: \(\Pr(x \land (y \lor z)) = \Pr(x) \cdot \Pr(y \lor z)\)

\(^1\) This means we get to import the rules of logic and algebra.
Section 4 – Dutch Book Proofs

Use Dutch Book proofs to demonstrate that for an agent’s beliefs to be coherent, they must be consistent with the following axioms/theorems/definitions of probability.

22. $0 \leq \Pr(E) \leq 1$.

(I) Demonstration that inconsistency with (22) is not coherent, i.e., it would leave an agent subject to a Dutch Book.

(II) Demonstration that satisfying (22) produces coherence; i.e., an agent with coherent beliefs may not have a Dutch Book set against them.

23. Demonstrate that if an agent fails to satisfy the following theorem that they will not have coherent beliefs:

$$\Pr(E) = 1 - \Pr(\neg E).$$

24. Demonstrate that if an agent fails to satisfy the following theorem that they will not have coherent beliefs:

$$\Pr(X \lor Y) = \Pr(X) + \Pr(Y);$$

where X and Y are mutually exclusive events.